Quantcast
Channel: Machine Learning | Towards AI
Viewing all articles
Browse latest Browse all 792

Towards AI #103: Apple integrates GenAI

$
0
0
Author(s): Towards AI Editorial Team Originally published on Towards AI. What happened this week in AI by Louie While the week started with some impressive new open model releases in China (Qwen2 LLM and Kling text-to-video model), anticipation was always building towards Apple’s WWDC keynote and AI announcements. As with any Gen AI production use case, Apple had to decide which features to build into its products first, how to implement them, and choose between many tradeoffs. This includes what the feature’s user benefits from relative to risks (like hallucinations and reputational damage from viral failure cases). Do we prioritize capability or latency/cost? (which can involve a decision between on-device and cloud models of various sizes). Do we use open-source models, in-house models, or external closed models? How do we balance user privacy and data security relative to ease of use and potential collection of future training and human feedback data? Towards AI can help with these questions, by the way, with our customized Generative AI courses and consultancy! Apple has chosen to get started with three tiers of intelligence for different features: 1) a small on-device in-house 3BN parameter LLM, 2) a larger server-based in-house LLM (which look a little above GPT3.5 level) with inference on Apple silicon and many new privacy and security features and 3) a ChatGPT integration with Siri for access to the capabilities of GPT-4o. Many of Apple’s first features are geared around smarter search (including a semantic understanding of media), prioritization of alerts and emails, transcription, summary, writing, and image tools. There are also hints of more agentic capabilities with Siri enabled to take actions in and across apps. Why should you care? With Apple’s 1 billion users and often trend-setting products, we think Apple’s AI choices are important for the direction of the whole industry. While the integration of ChatGPT into Siri seems like a big win for OpenAI — we do not think the relationship feels exclusive. Apple stated they would also later integrate Google’s Gemini model, and we think its new “App Intents API” and ability to connect third-party apps to Siri will likely lead to an open playground of third-party LLM models and products being integrated to various degrees. At the same time, however, data security and privacy with the often highly personal data stored within your iPhones and Macs are much easier to manage with on-device models or Apple private cloud models (though we still expect skepticism on how safe your data is here), so we expect pressure towards vertical integration for many features and capabilities. In any case, we think Apple’s late entry into the Generative AI and long overdue revamp of Siri will provide a lot of opportunities for AI and LLM developers going forward! — Louie Peters — Towards AI Co-founder and CEO Hottest News 1.Qwen2 Released The Qwen2 series is an advancement over the Qwen1.5, introducing five enhanced AI models with new features such as support for 27 additional languages and improved coding and mathematics functions. The standout Qwen2–72B offers superior safety and can comprehend lengthy contexts of up to 128K tokens. These models are available on Hugging Face and ModelScope. 2. Mistral Launches Fine-Tuning Tools To Make Customizing Its Models Easier and Faster Mistral introduced mistral-finetune for developers who want to fine-tune Mistral’s open-source models on their infrastructure. The codebase is built on the LoRA training paradigm and facilitates serverless fine-tuning. Users can try it by registering on their la Plateforme. 3. OpenAI Is Rebooting Its Robotics Team OpenAI is reinstating its robotics division, focusing on creating AI models for robotic applications in collaboration with external robotics companies. This is a strategic pivot from producing in-house hardware to empowering humanoid robots through partnerships, as evidenced by investments in entities like Figure AI. 4. OpenAI and Google DeepMind Workers Warn of AI Industry Risks in Open Letter A group of current and former employees from prominent artificial intelligence companies, including OpenAI and Google DeepMind, have issued an open letter calling for increased transparency and protections for whistleblowers within the AI industry. The letter, which calls for a “right to warn about artificial intelligence,” is one of the most public statements about the dangers of AI. 5. Chinese Company Kuaishou Releases Kling Chinese short-video app Kuaishou has launched a text-to-video service similar to OpenAI’s Sora. The Kling AI Model, in the trial stage, can process text into video clips up to 2 minutes long with 1080p resolution, supporting various aspect ratios. Five 5-minute reads/videos to keep you learning 1. LLM Merging Competition: Building LLMs Efficiently through Merging The article introduces a competition that challenges participants to integrate multiple fine-tuned LLMs to improve their performance and adaptability to novel tasks. Competitors will utilize pre-trained expert models with up to 8 billion parameters from the Hugging Face Model Hub, available under research-friendly licenses. The competition aims to minimize the costs and challenges of training LLMs from the ground up by utilizing existing models. 2. Scholars: AI Isn’t “Hallucinating” — It’s Bullshitting We know AI models hallucinate, but scholars Michael Townsend Hicks, James Humphries, and Joe Slater from the University of Glasgow argue that these inaccuracies are better understood as “bullshit.” This article explains why these inaccuracies might be better described as bullshit. 3. Claude’s Character It is essential to train AI models to have good character traits and to continue to have these traits as they become more extensive. This article from Anthropic explains the process behind crafting the personality of its Claude AI model, using ‘Character Training’ to help instill curiosity, thoughtfulness, and diverse viewpoints. 4. Extracting Concepts from GPT-4 Researchers have employed sparse autoencoders to break down GPT-4’s neural network into 16 million human-interpretable features, allowing for enhanced comprehension of AI processes. In this post, Open AI explains it further. They have also shared a paper detailing their experiments and methods. 5. Token-wise Influential Training Data Retrieval for Large Language Models This article introduces RapidIn, a framework designed to efficiently estimate the influence of training […]

Viewing all articles
Browse latest Browse all 792

Trending Articles